A Role for PGC-1α in Transcription and Excitability of Neocortical and Hippocampal Excitatory Neurons

Neuroscience. 2020 May 21:435:73-94. doi: 10.1016/j.neuroscience.2020.03.036. Epub 2020 Mar 25.

Abstract

The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a critical regulator of genes involved in neuronal metabolism, neurotransmission, and morphology. Reduced PGC-1α expression has been implicated in several neurological and psychiatric disorders. An understanding of PGC-1α's roles in different cell types will help determine the functional consequences of PGC-1α dysfunction and/or deficiency in disease. Reports from our laboratory and others suggest a critical role for PGC-1α in inhibitory neurons with high metabolic demand such as fast-spiking interneurons. Here, we document a previously unrecognized role for PGC-1α in maintenance of gene expression programs for synchronous neurotransmitter release, structure, and metabolism in neocortical and hippocampal excitatory neurons. Deletion of PGC-1α from these neurons caused ambulatory hyperactivity in response to a novel environment and enhanced glutamatergic transmission in neocortex and hippocampus, along with reductions in mRNA levels from several PGC-1α neuron-specific target genes. Given the potential role for a reduction in PGC-1α expression or activity in Huntington Disease (HD), we compared reductions in transcripts found in the neocortex and hippocampus of these mice to that of an HD knock-in model; few of these transcripts were reduced in this HD model. These data provide novel insight into the function of PGC-1α in glutamatergic neurons and suggest that it is required for the regulation of structural, neurosecretory, and metabolic genes in both glutamatergic neuron and fast-spiking interneuron populations in a region-specific manner. These findings should be considered when inferring the functional relevance of changes in PGC-1α gene expression in the context of disease.

Keywords: PGC-1α; behavior; electrophysiology; pyramidal neurons; transcription.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Hippocampus / metabolism
  • Interneurons / metabolism
  • Mice
  • Mice, Knockout
  • Neocortex* / metabolism
  • Neurons / metabolism
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism

Substances

  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha