Population dynamics and life history traits of Daphnia magna across thermal regimes of environments

Sci Total Environ. 2020 Jun 25:723:137963. doi: 10.1016/j.scitotenv.2020.137963. Epub 2020 Mar 19.

Abstract

The consequences of raising temperatures have been intensively studied by biologists and ecologists for the past few decades. However, current climatic changes also include many anomalous weather events, such as intra-seasonal heatwaves followed by immediate decreases in temperature. In this study, the responses of population development and life history traits to different thermal regimes were investigated. The freshwater water flea Daphnia magna (Cladocera, Crustacea) was used as a model organism. Daphnia magna populations were monitored under temperature regimes of warm (25 °C), cold (5 °C), synchronous (gradual changes between 25 °C and 5 °C) or stochastic (random changes between 25 °C and 5 °C). Population size of D. magna populations decreased with unpredictability of thermal conditions; the highest density of D. magna was found in the warm environment and the lowest density in the stochastic environment. Thermal regime had significant impact on the prevalence of asexual and sexual reproduction of D. magna. Under a synchronous regime, an accumulation of asexual reproduction was observed during cold episodes; this was followed by a phase of population disturbance, manifesting itself in high fluctuations of asexual reproduction and a pattern of sexual reproduction typical of a cold regime. Under a stochastic regime, the population disturbances were observed throughout the duration of the experiment. Daily observations of individual life history traits revealed that the development of populations under different thermal regimes resulted from the regime-specific survivability of neonates. Population development was also affected by the frequency of reproduction, which consisted of the number of broods carried per lifetime. The results indicate that not only temperature but also shifts in thermal conditions have an important influence on individual life history traits and population dynamics of D. magna. It is important to consider the effects of shifts in water temperature on demographic and individual traits simultaneously because the impact of thermal changes on population traits can be modified by individual life histories.

Keywords: Anomalous temperature; Lifespan; Maturation; Population size; Reproduction.

MeSH terms

  • Animals
  • Daphnia*
  • Humans
  • Infant, Newborn
  • Life History Traits*
  • Population Dynamics
  • Reproduction
  • Temperature