Applying Foil Queue Microelectrode with Tapered Structure in Micro-EDM to Eliminate the Step Effect on the 3D Microstructure's Surface

Micromachines (Basel). 2020 Mar 24;11(3):335. doi: 10.3390/mi11030335.

Abstract

When using foil queue microelectrodes (FQ-microelectrodes) for micro electrical discharge machining (micro-EDM), the processed results of each foil microelectrode (F-microelectrode) can be stacked to construct three-dimensional (3D) microstructures. However, the surface of the 3D microstructure obtained from this process will have a step effect, which has an adverse effect on the surface quality and shape accuracy of the 3D microstructures. To focus on this problem, this paper proposes to use FQ-microelectrodes with tapered structures for micro-EDM, thereby eliminating the step effect on the 3D microstructure's surface. By using a low-speed wire EDM machine, a copper foil with thickness of 300 μm was processed to obtain a FQ-microelectrode in which each of the F-microelectrodes has a tapered structure along its thickness direction. These tapered structures could effectively improve the construction precision of the 3D microstructure and effectively eliminate the step effect. In this paper, the effects of the taper angle and the number of microelectrodes on the step effect were investigated. The experimental results show that the step effect on the 3D microstructure's surface became less evident with the taper angle and the number of F-microelectrodes increased. Finally, under the processing voltage of 120 V, pulse width of 1 μs and pulse interval of 10 μs, a FQ-microelectrode (including 40 F-microelectrodes) with 10° taper angle was used for micro-EDM. The obtained 3D microstructure has good surface quality and the step effect was essentially eliminated.

Keywords: foil queue microelectrode; micro-EDM; step effect; tapered structure.