Antithermal Quenching of Luminescence in Zero-Dimensional Hybrid Metal Halide Solids

J Phys Chem Lett. 2020 Apr 16;11(8):2902-2909. doi: 10.1021/acs.jpclett.0c00293. Epub 2020 Mar 30.

Abstract

Zero-dimensional (0D) hybrid metal halides have emerged as a new generation of luminescent phosphors owing to their high radiative recombination rates, which, akin to their three-dimensional cousins, commonly demonstrate thermal quenching of luminescence. Here, we report on the finding of antithermal quenching of luminescence in 0D hybrid metal halides. Using (C9NH20)2SnBr4 single crystals as an example system, we show that 0D metal halides can demonstrate antithermal quenching of luminescence. A combination of experimental characterizations and first-principles calculations suggests that antithermal quenching of luminescence is associated with trap states introduced by structural defects in (C9NH20)2SnBr4. Importantly, we find that antithermal quenching of luminescence is not only limited to (C9NH20)2SnBr4 but also exists in other 0D metal halides. Our work highlights the important role of defects in impacting photophysical properties of hybrid metal halides and may stimulate new efforts to explore metal halides exhibiting antithermal quenching of luminescence at higher temperatures.