Bachelor groups in primate multilevel society facilitate gene flow across fragmented habitats

Curr Zool. 2020 Apr;66(2):113-122. doi: 10.1093/cz/zoaa006. Epub 2020 Feb 20.

Abstract

In the face of ongoing habitat fragmentation, many primate species have experienced reduced gene flow resulting in a reduction of genetic diversity, population bottlenecks, and inbreeding depression, including golden snub-nosed monkeys Rhinopithecus roxellana. Golden snub-nosed monkeys live in a multilevel society composed of several 1 male harem units that aggregate to form a cohesive breeding band, which is followed by one or more bachelor groups composed of juvenile, subadult, and adult male members. In this research, we examine the continuous landscape resistance surface, the genetic diversity and patterns of gene flow among 4 isolated breeding bands and 1 all-male band in the Qinling Mountains, China. Landscape surface modeling suggested that human activities and ecological factors severely limit the movement of individuals among breeding bands. Although these conditions are expected to result in reduced gene flow, reduced genetic diversity, and an increased opportunity for a genetic bottleneck, based on population genetic analyses of 13 microsatellite loci from 188 individuals inhabiting 4 isolated breeding bands and 1 all-male band, we found high levels of genetic diversity but low levels of genetic divergence, as well as high rates of gene flow between males residing in the all-male band and each of the 4 breeding bands. Our results indicate that the movement of bachelor males across the landscape, along with their association with several different breeding bands, appears to provide a mechanism for promoting gene flows and maintaining genetic diversity that may counteract the otherwise isolating effects of habitat fragmentation.

Keywords: Rhinopithecus roxellana, social organization; gene flow; male dispersal; multilevel society.