Exploration of Brain Connectivity during Human Inhibitory Control Using Inter-Trial Coherence

Sensors (Basel). 2020 Mar 19;20(6):1722. doi: 10.3390/s20061722.

Abstract

Inhibitory control is a cognitive process that inhibits a response. It is used in everyday activities, such as driving a motorcycle, driving a car and playing a game. The effect of this process can be compared to the red traffic light in the real world. In this study, we investigated brain connectivity under human inhibitory control using the phase lag index and inter-trial coherence (ITC). The human brain connectivity gives a more accurate representation of the functional neural network. Results of electroencephalography (EEG), the data sets were generated from twelve healthy subjects during left and right hand inhibitions using the auditory stop-signal task, showed that the inter-trial coherence in delta (1-4 Hz) and theta (4-7 Hz) band powers increased over the frontal and temporal lobe of the brain. These EEG delta and theta band activities neural markers have been related to human inhibition in the frontal lobe. In addition, inter-trial coherence in the delta-theta and alpha (8-12 Hz) band powers increased at the occipital lobe through visual stimulation. Moreover, the highest brain connectivity was observed under inhibitory control in the frontal lobe between F3-F4 channels compared to temporal and occipital lobes. The greater EEG coherence and phase lag index in the frontal lobe is associated with the human response inhibition. These findings revealed new insights to understand the neural network of brain connectivity and underlying mechanisms during human response inhibition.

Keywords: brain connectivity; delta band; electroencephalography (EEG); frontal lobe; inhibitory control; inter-trial coherence (ITC); temporal lobe; theta band.

MeSH terms

  • Adult
  • Brain / diagnostic imaging
  • Brain / physiology*
  • Brain Mapping
  • Electroencephalography
  • Female
  • Frontal Lobe / diagnostic imaging
  • Frontal Lobe / physiology*
  • Humans
  • Male
  • Photic Stimulation
  • Temporal Lobe / diagnostic imaging
  • Temporal Lobe / physiology*
  • Theta Rhythm / physiology*