Engineering and functionalization of large circular tandem repeat protein nanoparticles

Nat Struct Mol Biol. 2020 Apr;27(4):342-350. doi: 10.1038/s41594-020-0397-5. Epub 2020 Mar 23.

Abstract

Protein engineering has enabled the design of molecular scaffolds that display a wide variety of sizes, shapes, symmetries and subunit compositions. Symmetric protein-based nanoparticles that display multiple protein domains can exhibit enhanced functional properties due to increased avidity and improved solution behavior and stability. Here we describe the creation and characterization of a computationally designed circular tandem repeat protein (cTRP) composed of 24 identical repeated motifs, which can display a variety of functional protein domains (cargo) at defined positions around its periphery. We demonstrate that cTRP nanoparticles can self-assemble from smaller individual subunits, can be produced from prokaryotic and human expression platforms, can employ a variety of cargo attachment strategies and can be used for applications (such as T-cell culture and expansion) requiring high-avidity molecular interactions on the cell surface.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs / genetics
  • Cell Culture Techniques
  • Humans
  • Models, Molecular
  • Nanoparticles / chemistry*
  • Protein Domains / genetics
  • Protein Engineering*
  • Protein Stability
  • Proteins / chemistry*
  • Proteins / genetics
  • T-Lymphocytes / chemistry
  • Tandem Repeat Sequences / genetics*

Substances

  • Proteins