Quantum Acoustomechanics with a Micromagnet

Phys Rev Lett. 2020 Mar 6;124(9):093602. doi: 10.1103/PhysRevLett.124.093602.

Abstract

We show theoretically how to strongly couple the center-of-mass motion of a micromagnet in a harmonic potential to one of its acoustic phononic modes. The coupling is induced by a combination of an oscillating magnetic field gradient and a static homogeneous magnetic field. The former parametrically couples the center-of-mass motion to a magnonic mode while the latter tunes the magnonic mode in resonance with a given acoustic phononic mode. The magnetic fields can be adjusted to either cool the center-of-mass motion to the ground state or to enter into the strong quantum coupling regime. The center of mass can thus be used to probe and manipulate an acoustic mode, thereby opening new possibilities for out-of-equilibrium quantum mesoscopic physics. Our results hold for experimentally feasible parameters and apply to levitated micromagnets as well as micromagnets deposited on a clamped nanomechanical oscillator.