Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers - A drive towards greener and eco-friendlier biocatalytic systems

Sci Total Environ. 2020 Jun 20:722:137903. doi: 10.1016/j.scitotenv.2020.137903. Epub 2020 Mar 12.

Abstract

In recent years, lignocellulosic wastes have gathered much attention due to increasing economic, social, environmental apprehensions, global climate change and depleted fossil fuel reserves. The unsuitable management of lignocellulosic materials and related organic wastes poses serious environmental burden and causes pollution. On the other hand, lignocellulosic wastes hold significant economic potential and can be employed as promising catalytic supports because of impressing traits such as surface area, porous structure, and occurrence of many chemical moieties (i.e., carboxyl, amino, thiol, hydroxyl, and phosphate groups). In the current literature, scarce information is available on this important and highly valuable aspect of lignocellulosic wastes as smart carriers for immobilization. Thus, to fulfill this literature gap, herein, an effort has been made to signify the value generation aspects of lignocellulosic wastes. Literature assessment spotlighted that all these waste materials display high potential for immobilizing enzyme because of their low cost, bio-renewable, and sustainable nature. Enzyme immobilization has gained recognition as a highly useful technology to improve enzyme properties such as catalytic stability, performance, and repeatability. The application of carrier-supported biocatalysts has been a theme of considerable research, for the past three decades, in the bio-catalysis field. Nonetheless, the type of support matrix plays a key role in the immobilization process due to its influential impact on the physicochemical characteristics of the as-synthesized biocatalytic system. In the past, an array of various organic, inorganic, and composite materials has been used as carriers to formulate efficient and stable biocatalysts. This review is envisioned to provide recent progress and development on the use of different agricultural wastes (such as coconut fiber, sugarcane bagasse, corn and rice wastes, and Brewers' spent grain) as support materials for enzyme immobilization. In summary, the effective utilization of lignocellulosic wastes to develop multi-functional biocatalysts is not only economical but also reduce environmental problems of unsuitable management of organic wastes and drive up the application of biocatalytic technology in the industry.

Keywords: Bio-catalysis; Environmental impact; Enzyme immobilization; Green solutions; Lignocellulosic waste; Smart carriers.

Publication types

  • Review

MeSH terms

  • Agriculture
  • Biocatalysis*
  • Lignin
  • Waste Products

Substances

  • Waste Products
  • lignocellulose
  • Lignin