Recycling sustainability of waste paper industry in Beijing City: An analysis based on value chain and GIS model

Waste Manag. 2020 Apr 1:106:62-70. doi: 10.1016/j.wasman.2020.03.013. Epub 2020 Mar 18.

Abstract

China established a self-organized and market-driven recycling system, which was dominated by the informal sectors. In recent years, the amount of domestically-recycled waste paper grew slower than expectation in China, which may be resulted from a decline in economic sustainability of current recycling system. For understanding the waste paper recycling system in most cities in China, the economic mechanism remains unclear and the city-level data is extremely insufficient. In this work, an index of recycling sustainability (IRS, benefit divided by cost) is analyzed with a resolution of 1 km2 grid in Beijing City, by adopting value chain and GIS methodology. Five degrees of IRS are defined, from high-degree (IRS > 1.10) to low-degree (IRS < 0.95). Different stakeholders in the informal waste paper recycling system were interviewed to fill the data gap. Results show that: (1) from 2015 to 2018, the informal recycling of waste paper accounted for approximate 80% in Beijing; (2) the number of informal recyclables distribution sites decreased from 27 to 11, and their average distance to the city-center rose from 27.5 km to 40.9 km; (3) in 2015 and 2018, the grids with high-degree IRS accounted for 99.5% and 89.2%, respectively, indicating a sustainable waste paper recycling industry in Beijing; and (4) according to the scenario analysis, if the operating cost rises by 30%, the grids with low-degree IRS accounts for 98.5%, indicating a nontrivial challenges when the recycling cost keeps increasing in the future. Policy recommendations are put forward for a more sustainable paper waste recycling system in China.

Keywords: Beijing; Geographic information system; Index of recycling sustainability; Recycling; Value chain analysis; Waste paper.

MeSH terms

  • Beijing
  • China
  • Cities
  • Geographic Information Systems
  • Recycling
  • Solid Waste*
  • Waste Management*

Substances

  • Solid Waste