Competing endogenous RNA network analysis reveals potential long non-coding RNAs as predictive biomarkers of gastric cancer

Oncol Lett. 2020 Mar;19(3):2185-2196. doi: 10.3892/ol.2020.11351. Epub 2020 Jan 24.

Abstract

Gastric cancer (GC) is one of the most frequently occurring life-threatening malignancies worldwide. Due to its high mortality rate, the discovery of putative biomarkers that may be sensitive and specific to GC is of seminal importance. Long non-coding RNAs (lncRNAs) are non-translatable RNAs whose transcript length exceeds 200 base pairs. The dysregulation of lncRNA expression plays a key role in tumorigenesis and development. In the present study, the expression profiles of lncRNAs, microRNAs and mRNAs of 361 GC tissues (and 32 normal gastric tissues) were downloaded from The Cancer Genome Atlas database. Furthermore, differentially expressed RNAs were analyzed by the DEseq package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses confirmed some significant dysregulated signaling pathways and target RNAs. As a result, an lncRNA-associated competing endogenous RNA (ceRNA) network was constructed. Kaplan-Meier analysis of the differentially expressed RNAs associated with GC pathogenesis confirmed that the lncRNAs PVT1, HAND2-AS1 and ZNF667-AS1 were potentially associated with the prognosis of GC (P<0.05). The present study suggests the mechanism of ceRNA networks in GC, and further demonstrates that aberrant lncRNA expression may be used as an effective diagnostic tool (or target) for the prognosis of GC.

Keywords: HAND2-AS1; PVT1; ZNF667-AS1; competing endogenous RNA; gastric cancer.