Low-cost novel clay earthenware as separator in microbial electrochemical technology for power output improvement

Bioprocess Biosyst Eng. 2020 Aug;43(8):1369-1379. doi: 10.1007/s00449-020-02331-7. Epub 2020 Mar 19.

Abstract

A conventional reactor in microbial electrochemical technology (MET) consists of anode and cathode compartments divided by a separator, which is usually a proton exchange membrane (PEM), such as Nafion 117. In this study, a novel porous clay earthenware (NCE) was fabricated as the separator to replace the highly cost PEM. The fabrication of NCEs is with raw clay powder and starch powder that acts as a pore-forming agent at different starch powder contents (10 vol%, 20 vol%, and 30 vol%), ball-milled before hydraulically pressed to form green ceramic pellets and sintered up to 1200 °C. The highest power density of 2250 ± 21 mW/m2 (6.0 A/m2), the internal resistance of 75 ± 24 Ω and coulombic efficiency (CE) of 44 ± 21% were produced for MFC-NCE from 30 vol% starch powder content under batch mode operation. The MFC-PEM combination produced the lowest power density, CE and the highest internal resistance up to 1350 ± 17 mW/m2 (3.0 A/m2), 23 ± 15% and 326 ± 13 Ω, respectively.

Keywords: Internal resistance; Microbial fuel cell; Novel clay earthenware; Porosity; Starch powder; power density; sintering temperatures.

MeSH terms

  • Bioelectric Energy Sources*
  • Clay / chemistry*

Substances

  • Clay