The German Shorthair Pointer Dog Breed (Canis lupus familiaris): Genomic Inbreeding and Variability

Animals (Basel). 2020 Mar 17;10(3):498. doi: 10.3390/ani10030498.

Abstract

The German Shorthaired Pointer (GSHP) is a breed worldwide known for its hunting versatility. Dogs of this breed are appreciated as valuable companions, effective trackers, field trailers and obedience athletes. The aim of the present work is to describe the genomic architecture of the GSHP breed and to analyze inbreeding levels under a genomic and a genealogic perspective. A total of 34 samples were collected (24 Italian, 10 USA), and the genomic and pedigree coefficients of inbreeding have been calculated. A total of 3183 runs of homozygosity (ROH) across all 34 dogs have been identified. The minimum and maximum number of Single Nucleotide Polymorphisms (SNPs) defining all ROH are 40 and 3060. The mean number of ROH for the sample was 93.6. ROH were found on all chromosomes. A total of 854 SNPs (TOP_SNPs) defined 11 ROH island regions (TOP_ROH), in which some gene already associated with behavioral and morphological canine traits was annotated. The proportion of averaged observed homozygotes estimated on total number of SNPs was 0.70. The genomic inbreeding coefficient based on ROH was 0.17. The mean inbreeding based on genealogical information resulted 0.023. The results describe a low inbred population with quite a good level of genetic variability.

Keywords: ROH; SNP; dog; genetic diversity; inbreeding; run of homozygosity.