Biomechanical stress regulates mammalian tooth replacement

Cell Stress. 2020 Feb 18;4(3):64-65. doi: 10.15698/cst2020.03.215.

Abstract

Cyclical renewal of integumentary organs, including hair, feathers, and teeth occurs throughout an organism's lifetime. Transition from the resting to the initiation stage is critical for each cycle, but the mechanism remains largely unknown. Humans have two sets of dentitions-deciduous and permanent-and tooth replacement occurs only once. Prior to eruption of the permanent tooth (PT), the successional dental lamina (SDL) of the PT can be detected as early as the embryonic stage, even though it then takes about 6-12 years for the SDL to develop to late bell stage. Little is known about the mechanism by which resting SDL transitions into the initiation stage inside the mandible. As a large mammal, the miniature pig, which is also a diphyodont, was a suitable model for our recent study (EMBO J (2020)39: e102374). Using this model, we found that the SDL of PT did not begin the transition into the bud stage until the deciduous tooth (DT) began to erupt.

Keywords: Wnt signaling; biomechanics; organ replacement; stress.

Publication types

  • Comment