Binary mixed molybdenum cobalt sulfide nanosheets decorated on rGO as a high-performance supercapacitor electrode

Nanotechnology. 2020 Apr 17;31(27):275406. doi: 10.1088/1361-6528/ab80fb. Epub 2020 Mar 18.

Abstract

This work represents the production of MoS2/CoS2 hybridized with rGO as a material for high-performance supercapacitors. The hydrothermal method is used for the synthesis. The as-prepared material is characterized by x-ray diffraction spectroscopy, x-ray photoelectron spectroscopy, and electron microscopy. The size of the nanoparticles is estimated at 80 nm, and their uniform dispersion on rGO is observed from electron microscopy images. A high-specific capacitance of 190 mF cm-2 obtains for MoS2/CoS2/rGO at the current density of 0.5 mA cm-2 in 2 M KOH. The cyclic stability over 5000 cycles at a scan rate of 100 mV s-1 shows that the MoS2/CoS2/rGO electrode is stable, and 88.6% of its initial capacitance sustains at the end of 5000 cycles. This excellent performance is assigned to the synergistic effect of rGO and MoS2/CoS2. This electrode with excellent stability and capacitance could be a potential candidate for supercapacitor electrode materials.