Multi-Arch-Structured All-Carbon Aerogels with Superelasticity and High Fatigue Resistance as Wearable Sensors

ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16822-16830. doi: 10.1021/acsami.0c01794. Epub 2020 Mar 29.

Abstract

Compressible and ultralight all-carbon materials are promising candidates for piezoresistive pressure sensors. Although several fabrication methods have been developed, the required elasticity and fatigue resistance of all-carbon materials are yet to be satisfied as a result of energy loss and structure-derived fatigue failure. Herein, we present a two-stage solvothermal freeze-casting approach to fabricate all-carbon aerogel [modified graphene aerogel (MGA)] with a multi-arched structure, which is enabled by the in-depth solvothermal reduction of graphene oxide and unidirectional ice-crystal growth. MGA exhibits supercompressibility and superelasticity, which can resist an extreme compressive strain of 99% and maintain 93.4% height retention after 100 000 cycles at the strain of 80%. Rebound experiments reveal that MGA can rebound the ball (367 times heavier than the aerogel) in 0.02 s with a very fast recovery speed (∼615 mm s-1). Even if the mass ratio between the ball and aerogel is increased to 1306, the ball can be rebound in a relatively short time (0.04 s) with a fast recovery speed (∼535 mm s-1). As a result of its excellent mechanical robustness and electrical conductivity, MGA presents a stable stress-current response (10 000 cycles), tunable linear sensitivity (9.13-7.29 kPa-1), and low power consumption (4 mW). The MGA-based wearable pressure sensor can monitor human physiological signals, such as pulses, sound vibrations, and muscular movements, demonstrating its potential practicability as a wearable device.

Keywords: all-carbon aerogel; compressible; fatigue resistance; piezoresistive sensor; wearable electronics.