Work Function Engineering of Electrohydrodynamic-Jet-Printed PEDOT:PSS Electrodes for High-Performance Printed Electronics

ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17799-17805. doi: 10.1021/acsami.0c02580. Epub 2020 Apr 1.

Abstract

Poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) has demonstrated outstanding performance as a charge transport layer or an electrode in various electronic devices, including organic solar cells, organic light-emitting diodes, and organic field-effect transistors (OFETs). The electrical properties of these devices are affected by the contact properties at the PEDOT:PSS-semiconductor junction. In this research, we performed work function (WF) engineering of electrohydrodynamic (EHD)-jet-printed PEDOT:PSS and successfully used it as an electrode to fabricate high-performance OFETs and complementary logic circuits. Two types of PEDOT:PSS materials-one with a high WF (HWF, 5.28 eV) and the other with a low WF (LWF, 4.53 eV)-were synthesized and EHD-jet-printed. The WF of PEDOT:PSS was deterministically modulated by approximately 0.75 eV through simple mixing of the two synthesized PEDOT:PSS materials in various ratios. OFETs fabricated with HWF and LWF PEDOT:PSS electrodes showed excellent electrical properties, including the ON/OFF switching ratio higher than 107 and the highest carrier mobility greater than 1 cm2·V-1·s-1. Furthermore, the HWF and LWF PEDOT:PSS electrodes were integrated to fabricate complementary metal-oxide-semiconductor (CMOS) NOT, NOR, and NAND circuits.

Keywords: EHD printing; PEDOT:PSS; logic circuit; transistor; work function.