Multi-Layered Polyamide/Collagen Scaffolds with Topical Sustained Release of N-Acetylcysteine for Promoting Wound Healing

Int J Nanomedicine. 2020 Feb 28:15:1349-1361. doi: 10.2147/IJN.S232190. eCollection 2020.

Abstract

Background: Impaired wound healing might be associated with many issues, especially overactive of reactive oxygen species (ROS), deficiency of blood vessels and immature of epidermis. N-acetylcysteine (NAC), as an antioxidant, could solve these problems by inhibiting overreactive of ROS, promoting revascularization and accelerating re-epithelialization. How to deliver NAC in situ with a controllable releasing speed still remain a challenge.

Materials and methods: In this study, we combined collagen (Col) with N-acetylcysteine to perform the characteristics of sustained release and chemically crosslinked Col/NAC composite with polyamide (PA) nanofibers to enhance the mechanical property of collagen and fabricated this multi-layered scaffold (PA-Col/NAC scaffold). The physical properties of the scaffolds such as surface characteristics, water absorption and tensile modulus were tested. Meanwhile, the ability to promote wound healing in vitro and in vivo were investigated.

Results: These scaffolds were porous and performed great water absorption. The PA-Col/NAC scaffold could sustainably release NAC for at least 14 days. After cell implantation, PA-Col/NAC scaffold showed better cell proliferation and cell migration than the other groups. In vivo, PA-Col/NAC scaffolds could promote wound healing best among all the groups.

Conclusion: The multi-layered scaffolds could obviously accelerate the process of wound healing and exert better and prolonged effects.

Keywords: N-acetylcysteine; multi-layered structure; polyamide; sustained release; wound healing.

MeSH terms

  • Acetylcysteine / pharmacology*
  • Animals
  • Antioxidants / pharmacology
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Collagen / chemistry*
  • Delayed-Action Preparations
  • Free Radical Scavengers / pharmacology*
  • Male
  • Nanofibers / chemistry
  • Nylons / chemistry*
  • Rats
  • Rats, Sprague-Dawley
  • Re-Epithelialization / drug effects*
  • Reactive Oxygen Species / metabolism
  • Tissue Scaffolds / chemistry*
  • Wound Healing / drug effects*

Substances

  • Antioxidants
  • Delayed-Action Preparations
  • Free Radical Scavengers
  • Nylons
  • Reactive Oxygen Species
  • Collagen
  • Acetylcysteine