β4-Nicotinic Receptors Are Critically Involved in Reward-Related Behaviors and Self-Regulation of Nicotine Reinforcement

J Neurosci. 2020 Apr 22;40(17):3465-3477. doi: 10.1523/JNEUROSCI.0356-19.2020. Epub 2020 Mar 17.

Abstract

Nicotine addiction, through smoking, is the principal cause of preventable mortality worldwide. Human genome-wide association studies have linked polymorphisms in the CHRNA5-CHRNA3-CHRNB4 gene cluster, coding for the α5, α3, and β4 nicotinic acetylcholine receptor (nAChR) subunits, to nicotine addiction. β4*nAChRs have been implicated in nicotine withdrawal, aversion, and reinforcement. Here we show that β4*nAChRs also are involved in non-nicotine-mediated responses that may predispose to addiction-related behaviors. β4 knock-out (KO) male mice show increased novelty-induced locomotor activity, lower baseline anxiety, and motivational deficits in operant conditioning for palatable food rewards and in reward-based Go/No-go tasks. To further explore reward deficits we used intracranial self-administration (ICSA) by directly injecting nicotine into the ventral tegmental area (VTA) in mice. We found that, at low nicotine doses, β4KO self-administer less than wild-type (WT) mice. Conversely, at high nicotine doses, this was reversed and β4KO self-administered more than WT mice, whereas β4-overexpressing mice avoided nicotine injections. Viral expression of β4 subunits in medial habenula (MHb), interpeduncular nucleus (IPN), and VTA of β4KO mice revealed dose- and region-dependent differences: β4*nAChRs in the VTA potentiated nicotine-mediated rewarding effects at all doses, whereas β4*nAChRs in the MHb-IPN pathway, limited VTA-ICSA at high nicotine doses. Together, our findings indicate that the lack of functional β4*nAChRs result in deficits in reward sensitivity including increased ICSA at high doses of nicotine that is restored by re-expression of β4*nAChRs in the MHb-IPN. These data indicate that β4 is a critical modulator of reward-related behaviors.SIGNIFICANCE STATEMENT Human genetic studies have provided strong evidence for a relationship between variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster and nicotine addiction. Yet, little is known about the role of β4 nicotinic acetylcholine receptor (nAChR) subunit encoded by this cluster. We investigated the implication of β4*nAChRs in anxiety-, food reward- and nicotine reward-related behaviors. Deletion of the β4 subunit gene resulted in an addiction-related phenotype characterized by low anxiety, high novelty-induced response, lack of sensitivity to palatable food rewards and increased intracranial nicotine self-administration at high doses. Lentiviral vector-induced re-expression of the β4 subunit into either the MHb or IPN restored a "stop" signal on nicotine self-administration. These results suggest that β4*nAChRs provide a promising novel drug target for smoking cessation.

Keywords: addiction; habenula; interpeduncular nucleus; nicotine; nicotinic receptors; reward.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior, Animal / drug effects
  • Conditioning, Operant / drug effects*
  • Discrimination Learning / drug effects
  • Male
  • Mice
  • Mice, Knockout
  • Motivation / drug effects
  • Motor Activity / drug effects*
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Nicotine / administration & dosage*
  • Nicotinic Agonists / administration & dosage
  • Receptors, Nicotinic / genetics
  • Receptors, Nicotinic / metabolism*
  • Reward*
  • Self Administration
  • Self-Control*
  • Ventral Tegmental Area / drug effects*

Substances

  • Chrnb4 protein, mouse
  • Nerve Tissue Proteins
  • Nicotinic Agonists
  • Receptors, Nicotinic
  • Nicotine