Fabrication of Three-Dimensional Composite Scaffold for Simultaneous Alveolar Bone Regeneration in Dental Implant Installation

Int J Mol Sci. 2020 Mar 9;21(5):1863. doi: 10.3390/ijms21051863.

Abstract

Dental implant surgeries involve the insertion of implant fixtures into alveolar bones to replace missing teeth. When the availability of alveolar bone at the surgical site is insufficient, bone graft particles are filled in the insertion site for successful bone reconstruction. Bone graft particles induce bone regeneration over several months at the insertion site. Subsequently, implant fixtures can be inserted at the recipient site. Thus, conventional dental implant surgery is performed in several steps, which in turn increases the treatment period and cost involved. Therefore, to reduce surgical time and minimize treatment costs, a novel hybrid scaffold filled with bone graft particles that could be combined with implant fixtures is proposed. This scaffold is composed of a three-dimensionally (3D) printed polycaprolactone (PCL) frame and osteoconductive ceramic materials such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). Herein, we analyzed the porosity, internal microstructure, and hydrophilicity of the hybrid scaffold. Additionally, Saos-2 cells were used to assess cell viability and proliferation. Two types of control scaffolds were used (a 3D printed PCL frame and a hybrid scaffold without HA/β-TCP particles) for comparison, and the fabricated hybrid scaffold was verified to retain osteoconductive ceramic particles without losses. Moreover, the fabricated hybrid scaffold had high porosity and excellent microstructural interconnectivity. The in vitro Saos-2 cell experiments revealed superior cell proliferation and alkaline phosphatase assay results for the hybrid scaffold than the control scaffold. Hence, the proposed hybrid scaffold is a promising candidate for minimizing cost and duration of dental implant surgery.

Keywords: 3D printing; additive manufacturing; alveolar bone regeneration; bone graft particle; hybrid scaffold.

MeSH terms

  • Bone Regeneration / physiology*
  • Bone and Bones / chemistry*
  • Calcium Phosphates / chemistry
  • Cell Line, Tumor
  • Cell Proliferation / physiology
  • Ceramics / chemistry
  • Dental Implants
  • Durapatite / chemistry
  • Humans
  • Materials Testing / methods
  • Polyesters / chemistry
  • Porosity
  • Printing, Three-Dimensional
  • Tissue Scaffolds / chemistry*

Substances

  • Calcium Phosphates
  • Dental Implants
  • Polyesters
  • beta-tricalcium phosphate
  • polycaprolactone
  • Durapatite