Novel Quaternary Ammonium-Functionalized Covalent Organic Frameworks/Poly(2,6-dimethyl-1,4-phenylene oxide) Hybrid Anion Exchange Membranes with Enhanced Ion Conductivity and Stability

ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15138-15144. doi: 10.1021/acsami.9b22916. Epub 2020 Mar 24.

Abstract

Here we report a new hybrid anion exchange membrane with enhanced hydroxide conductivity and excellent chemical and dimensional stability by incorporating quaternary ammonium (QA)-functionalized covalent organic framework into brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO). N,N,N',N' -Tetramethyl-1,6-hexanediamine (TMHDA) was impregnated into the pores of COF-LZU1 via a vacuum-assisted method, followed by reacting with allyl bromide. The generated QA groups were immobilized within the highly ordered pores of COF-LZU1 via in situ polymerization, forming long-range ordered multiple ion channels. The obtained QA@COF-LZU1 was then mixed with QAPPO to construct a hybrid anion exchange membrane for anion exchange membrane fuel cells (AEMFCs). The hydroxide conductivity of QA@COF-LZU1/PPO hybrid membrane increased up to 168.00 mS cm-1 at 80 °C, about 77% higher than that of pristine membrane. In addition, alkaline stability and thermal stability of the hybrid membranes were obviously enhanced. The excellent performance and the outstanding chemical stability render the COF hybrid membrane a good candidate for the application in AEMFCs.

Keywords: COF-LZU1; anion exchange membrane; covalent organic framework; hydroxide conductivity; quaternary ammonium.