The Effects of Fibrin-icariin Nanoparticle Loaded in Poly (lactic-co-glycolic) Acid Scaffold as a Localized Delivery System on Chondrogenesis of Human Adipose-derived Stem Cells

Adv Biomed Res. 2020 Feb 25:9:6. doi: 10.4103/abr.abr_143_19. eCollection 2020.

Abstract

Background: Nowadays, cartilage tissue engineering is the best candidate for regeneration of cartilage defects. This study evaluates the effect of fibrin/icariin (ICA) nanoparticles (F/I NPs) on chondrogenesis of stem cells.

Materials and methods: F/I NPs were characterized by Dynamic Light Scattering DLS. Poly (lactic-co-glycolic) acid (PLGA)-F/I NP scaffold was fabricated and assessed by scanning electron microscope. Human adipose-derived stem cells (hADSCs) were seeded on scaffold and induced for chondrogenesis. After 14 days, cell viability and gene expression were analyzed by the 3-(4, 5- dimethylthiazol-2yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. MTT assay and real-time polymerase chain reaction (RT-PCR).

Results: The size and surface charge of F/I NP were about 28-30 nm and - 17, respectively. The average of pore size of PLGA and PLGA-fibrin/ICA was 230 and 340 μm, respectively. Cell viability of differentiated cells in P/F group was higher than others significantly (P ≤ 0.05). Furthermore, quantitative RT-PCR analysis demonstrated that ICA upregulated cartilaginous-specific gene expression. Furthermore, the results of the expression of type I collagen revealed that ICA downregulated this gene significantly (P < 0.01).

Conclusions: The results indicated that F/I NP could be a potential factor for chondrogenesis of stem cells and downregulation of fibrocartilage marker.

Keywords: Adipose-derived stem cells; chondrogenesis; fibrin nanoparticles; icariin; poly (lactic-co-glycolic) acid.