Coarse-grained MD simulations reveal beta-amyloid fibrils of various sizes bind to interfacial liquid-ordered and liquid-disordered regions in phase separated lipid rafts with diverse membrane-bound conformational states

Biophys Chem. 2020 May:260:106355. doi: 10.1016/j.bpc.2020.106355. Epub 2020 Mar 5.

Abstract

The membrane binding behaviors of beta-amyloid fibrils, dimers to pentamers, from solution to lipid raft surfaces, were investigated using coarse-grained (CG) MD simulations. Our CG rafts contain phospholipid, cholesterol (with or without tail- or headgroup modifications), and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1). All rafts exhibited liquid-ordered (Lo), liquid-disordered (Ld), and interfacial Lo/Ld (Lod) domains, with domain sizes depending on cholesterol structure. For rafts without GM1, all fibrils bound to the Lod domains. Specifically, dimer fibrils bound exclusively via the C-terminal, while larger fibrils could bind via other protein regions. Interestingly, a membrane-inserted state was detected for a trimer fibril in a raft with tail-group modified cholesterol. For rafts containing GM1, fibrils bound either to the GM1-clusters, with numerous membrane-bound conformations, or to the non-GM1-containing-Lod domains via the C-terminal. Our results indicate beta-amyloid fibrils bind to Lod domains or GM1, with diversified membrane-bound conformations, in structurally heterogeneous lipid membranes.

Keywords: Amyloid fibrils membrane interactions; Coarse-grained model; Lipid rafts; MD simulations; Oxidized cholesterols; Phase-separated lipid domains.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid beta-Peptides / chemistry*
  • Binding Sites
  • Humans
  • Lipids / chemistry*
  • Molecular Conformation
  • Molecular Dynamics Simulation*
  • Particle Size

Substances

  • Amyloid beta-Peptides
  • Lipids