Green (cell) factories for advanced production of plant secondary metabolites

Crit Rev Biotechnol. 2020 Jun;40(4):443-458. doi: 10.1080/07388551.2020.1731414. Epub 2020 Mar 16.

Abstract

For centuries plants have been intensively utilized as reliable sources of food, flavoring, agrochemical and pharmaceutical ingredients. However, plant natural habitats are being rapidly lost due to climate change and agriculture. Plant biotechnology offers a sustainable method for the bioproduction of plant secondary metabolites using plant in vitro systems. The unique structural features of plant-derived secondary metabolites, such as their safety profile, multi-target spectrum and "metabolite likeness," have led to the establishment of many plant-derived drugs, comprising approximately a quarter of all drugs approved by the Food and Drug Administration and/or European Medicinal Agency. However, there are still many challenges to overcome to enhance the production of these metabolites from plant in vitro systems and establish a sustainable large-scale biotechnological process. These challenges are due to the peculiarities of plant cell metabolism, the complexity of plant secondary metabolite pathways, and the correct selection of bioreactor systems and bioprocess optimization. In this review, we present an integrated overview of the possible avenues for enhancing the biosynthesis of high-value marketable molecules produced by plant in vitro systems. These include metabolic engineering and CRISPR/Cas9 technology for the regulation of plant metabolism through overexpression/repression of single or multiple structural genes or transcriptional factors. The use of NMR-based metabolomics for monitoring metabolite concentrations and additionally as a tool to study the dynamics of plant cell metabolism and nutritional management is discussed here. Different types of bioreactor systems, their modification and optimal process parameters for the lab- or industrial-scale production of plant secondary metabolites are specified.

Keywords: CRISPR/Cas9; Plant in vitro systems; bioreactors; cambial meristematic cells; metabolic engineering; metabolomics.

Publication types

  • Review

MeSH terms

  • Bioreactors*
  • CRISPR-Cas Systems
  • Gene Editing
  • Metabolic Engineering / methods*
  • Plant Cells / metabolism*
  • Plants / genetics
  • Plants / metabolism
  • Secondary Metabolism*