Gene Expression Alterations and Molecular Analysis of CHEK1 in Solid Tumors

Cancers (Basel). 2020 Mar 12;12(3):662. doi: 10.3390/cancers12030662.

Abstract

Alterations in the Checkpoint kinase (CHEK1) gene, its regulation, and the possible clinical outcomes in human solid tumors have not been previously examined. Therefore, the present study was carried out to evaluate the expression of CHEK1 in solid tumors as well as the mechanism by which it can be regulated through non-coding RNAs. The expression of CHEK1 was investigated using Oncomine analysis. cBioPortal, Kaplan-Meier Plotter, and PrognoScan were performed to identify the prognostic roles of this gene in solid tumors. The copy number alteration, mutation, interactive analysis, and visualization of the altered networks were performed by cBioPortal. The molecular binding analysis was carried out by Schrodinger suite, PATCHDOCK, and discovery studio visualizer. The study demonstrated that the CHEK1 gene was differentially expressed in four different cancers, and that reduced CHEK1 mRNA expression is an unfavorable prognostic factor for patients with gastric and colorectal cancer. The molecular docking results showed that the CHEK1 gene can be regulated by microRNAs (miR-195-5p) due to the number of stable hydrogen atoms observed within the distance of 2.0 Å and the favorable amino acids (Ala221, Ile353, Ile365, Ile756, Val797, Val70, Val154, Ile159, Val347, Tyr804, Phe811, Tyr815, and Phe156) identified in the binding pocket of the argonaute protein. Due to the possibility of CHEK1's involvement in solid tumors, it may potentially be a target for therapeutic intervention in cancer. Further studies into the interaction between CHEK1 and other co-expressed genes may give further insight into other modes of regulation of this gene in cancer patients.

Keywords: CHEK1; argonaute protein; cancer; gene expression; molecular docking; solid tumor.