Dynamic Collaborative Tracking

IEEE Trans Neural Netw Learn Syst. 2019 Oct;30(10):3035-3046. doi: 10.1109/TNNLS.2018.2861838.

Abstract

Correlation filter has been demonstrated remarkable success for visual tracking recently. However, most existing methods often face model drift caused by several factors, such as unlimited boundary effect, heavy occlusion, fast motion, and distracter perturbation. To address the issue, this paper proposes a unified dynamic collaborative tracking framework that can perform more flexible and robust position prediction. Specifically, the framework learns the object appearance model by jointly training the objective function with three components: target regression submodule, distracter suppression submodule, and maximum margin relation submodule. The first submodule mainly takes advantage of the circulant structure of training samples to obtain the distinguishing ability between the target and its surrounding background. The second submodule optimizes the label response of the possible distracting region close to zero for reducing the peak value of the confidence map in the distracting region. Inspired by the structure output support vector machines, the third submodule is introduced to utilize the differences between target appearance representation and distracter appearance representation in the discriminative mapping space for alleviating the disturbance of the most possible hard negative samples. In addition, a CUR filter as an assistant detector is embedded to provide effective object candidates for alleviating the model drift problem. Comprehensive experimental results show that the proposed approach achieves the state-of-the-art performance in several public benchmark data sets.