Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications

Biochim Biophys Acta Proteins Proteom. 2020 Jul;1868(7):140409. doi: 10.1016/j.bbapap.2020.140409. Epub 2020 Apr 6.

Abstract

Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.

Keywords: Activity-based probes; Cancer tissue targeting; FAP inhibitors; FAP substrates; Fibroblast activation protein.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Catalytic Domain
  • Dipeptidyl Peptidase 4 / metabolism
  • Endopeptidases
  • Fibroblasts / metabolism*
  • Gelatinases / chemistry
  • Gelatinases / drug effects
  • Gelatinases / metabolism*
  • Humans
  • Membrane Proteins / chemistry
  • Membrane Proteins / drug effects
  • Membrane Proteins / metabolism*
  • Molecular Structure
  • Neoplasms / diagnosis
  • Neoplasms / metabolism
  • Neoplasms / therapy
  • Prodrugs
  • Prolyl Oligopeptidases
  • Serine Endopeptidases / chemistry
  • Serine Endopeptidases / drug effects
  • Serine Endopeptidases / metabolism*
  • Substrate Specificity
  • Tumor Microenvironment

Substances

  • Membrane Proteins
  • Prodrugs
  • Endopeptidases
  • DPP4 protein, human
  • Dipeptidyl Peptidase 4
  • Serine Endopeptidases
  • fibroblast activation protein alpha
  • PREPL protein, human
  • Prolyl Oligopeptidases
  • Gelatinases