Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities

Microsc Res Tech. 2020 Jun;83(6):706-719. doi: 10.1002/jemt.23460. Epub 2020 Mar 14.

Abstract

Green synthesis of nanoparticles using plants has become a promising substitute for the conventional chemical synthesis methods. In the present study, our aim was to synthesize chromium oxide nanoparticles (Cr2 O3 NPs) through a facile, low-cost, eco-friendly route using leaf extract of Rhamnus virgata (RV). The formation of Cr2 O3 NPs was confirmed and characterized by spectroscopic profile of UV-Vis, EDX, FTIR, and XRD analyses. The UV-visible spectroscopy has confirmed the formation of Cr2 O3 NPs by the change of color owing to surface plasmon resonance. The bioactive functional groups present in the leaf extract of RV involved in reduction and stabilization of Cr2 O3 NPs were determined by FTIR analysis. Based on XRD analysis, crystalline nature of Cr2 O3 NPs was determined. The morphological shape and elemental composition of Cr2 O3 NPs were investigated using SEM and EDX analyses, respectively. With growing applications of Cr2 O3 NPs in biological perspectives, Cr2 O3 NPs were evaluated for diverse biopotentials. Cr2 O3 NPs were further investigated for its cytotoxicity potentials against HepG2 and HUH-7 cancer cell lines (IC50 : 39.66 and 45.87 μg/ml), respectively. Cytotoxicity potential of Cr2 O3 NPs was confirmed against promastigotes (IC50 : 33.24 μg/ml) and amastigotes (IC50 : 44.31 μg/ml) using Leishmania tropica (KMH23 ). The Cr2 O3 NPs were further evaluated for antioxidants, biostatic, alpha-amylase, and protein kinase inhibition properties. Biocompatibility assay was investigated against human macrophages which confirmed the nontoxic nature of Cr2 O3 NPs. Overall, the synthesized Cr2 O3 NPs are biocompatible and nontoxic and proved to possess significant biopotentials. In future, different in vivo studies are needed to fully investigate the cytotoxicity and mechanism of action associated with these Cr2 O3 NPs.

Keywords: Cr2O3NPs; anticancer; antileishmanial; antimicrobial; biocompatibility; protein kinase.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Antioxidants / pharmacology
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Chromium Compounds / chemistry*
  • Chromium Compounds / pharmacology
  • Crystallization
  • Epithelial Cells / drug effects
  • Green Chemistry Technology*
  • Hep G2 Cells
  • Humans
  • Leishmania tropica / drug effects
  • Metal Nanoparticles / chemistry*
  • Microscopy, Electron, Scanning
  • Phytochemicals / chemistry*
  • Plant Extracts / chemistry*
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Anti-Bacterial Agents
  • Antioxidants
  • Chromium Compounds
  • Phytochemicals
  • Plant Extracts
  • chromium dioxide