Direct Measurement of Radical-Catalyzed C6H6 Formation from Acetylene and Validation of Theoretical Rate Coefficients for C2H3 + C2H2 and C4H5 + C2H2 Reactions

J Phys Chem A. 2020 Apr 9;124(14):2871-2884. doi: 10.1021/acs.jpca.0c00558. Epub 2020 Mar 25.

Abstract

The addition of vinylic radicals to acetylene is an important step contributing to the formation of polycyclic aromatic hydrocarbons in combustion. The overall reaction 3C2H2 → C6H6 could result in large benzene yields, but without accurate rate parameters validated by experiment, the extent of aromatic ring formation from this pathway is uncertain. The addition of vinyl radicals to acetylene was investigated using time-resolved photoionization time-of-flight mass spectrometry at 500 and 700 K and 5-50 Torr. The formation of C6H6 was observed at all conditions, attributed to sequential addition to acetylene followed by cyclization. Vinylacetylene (C4H4) was observed with increasing yield from 500 to 700 K, attributed to the β-scission of the thermalized 1,3-butadien-1-yl radical and the chemically activated reaction C2H3 + C2H2 → C4H4 + H. The measured kinetics and product distributions are consistent with a kinetic model constructed using pressure- and temperature-dependent reaction rate coefficients computed from previously reported ab initio calculations. The experiments provide direct measurements of the hypothesized C4H5 intermediates and validate predictions of pressure-dependent addition reactions of vinylic radicals to C2H2, which are thought to play a key role in soot formation.