GABPA-dependent down-regulation of DICER1 in follicular thyroid tumours

Endocr Relat Cancer. 2020 May;27(5):295-308. doi: 10.1530/ERC-19-0446.

Abstract

Mutations in the miRNA enzyme gene DICER1 have been reported in several endocrine malignancies and is associated with the rare tumour-predisposing DICER1 syndrome. DICER1 mutations have been reported in subsets of follicular thyroid carcinoma (FTC), but the role of DICER1 in follicular thyroid tumorigenesis has not been extensively studied. In this study, we investigate the role of DICER1 in 168 follicular thyroid tumours and in an FTC cell line. We found rare DICER1 mutations in paediatric FTC cases and a general DICER1 down-regulation in FTCs visualized both on mRNA and protein level, especially pronounced in Hürthle cell carcinoma (HuCC). The down-regulation was also evident in follicular thyroid adenomas (FTAs), suggesting a potential early step in tumorigenesis. The expression of DICER1 was lower in FTCs of older patients in which TERT promoter mutations are more frequent. In FTCs, DICER1 down-regulation was not caused by gene copy number loss but significantly correlated to expression of the transcription factor GABPA in clinical cases. GABPA was found to bind to the DICER1 promoter and regulate DICER1 expression in vitro, as GABPA depletion in FTC cell lines reduced DICER1 expression. This in turn stimulated cell proliferation and affected the miRNA machinery, evident by altered miRNA expression. To conclude, we show that GABPA directly regulates DICER1 in FTC, acting as a tumour suppressor and displaying down-regulation in clinical samples. We also show reduced expression of DICER1 in benign and malignant follicular thyroid tumours, suggesting a potentially early tumorigenic role of this gene aberrancy.

Keywords: DICER1; GABPA; carcinoma; follicular; thyroid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma, Follicular / genetics*
  • Adenocarcinoma, Follicular / pathology
  • Adult
  • Aged
  • Aged, 80 and over
  • Cell Line, Tumor
  • Cell Proliferation
  • DEAD-box RNA Helicases / metabolism*
  • Down-Regulation
  • Female
  • Humans
  • Male
  • Middle Aged
  • Ribonuclease III / metabolism*

Substances

  • DICER1 protein, human
  • Ribonuclease III
  • DEAD-box RNA Helicases