Cryptococcus neoformans/gattii Species Complexes from Pre-HIV Pandemic Era Contain Unusually High Rate of Non-Wild-Type Isolates for Amphotericin B

Infect Drug Resist. 2020 Feb 26:13:673-681. doi: 10.2147/IDR.S235473. eCollection 2020.

Abstract

Introduction: The Cryptococcus neoformans/gattii species complexes are a leading cause of fatality among HIV-infected patients. Despite the unavailability of clinical breakpoints (CBPs) for antifungal agents, epidemiological cutoff values (ECVs) were recently proposed, and non-wild-type isolates for polyenes and azoles are being increasingly reported. However, the distributions of the susceptibility patterns for pre-HIV-era isolates have not been studied.

Methods: We determined the in vitro antifungal susceptibility patterns of 233 Cryptococcus isolates, collected at the National Institutes of Health, USA, in pre-HIV pandemic era, to study minimum inhibitory concentrations (MICs) to the important drugs for cryptococcosis and to compare the results with strain genotypes. Amphotericin B susceptibility was compared to published ECV of C. neoformans.

Results: The 233 Cryptococcus strains consisted of 89.7% C. neoformans species complex and 10.3% C. gattii species complex. Most were from clinical sources (189, 81.1%), and the major molecular type was VNI (146, 62.7%). The highest geometric mean (GM) was observed for fluconazole (GM = 0.96 µg/mL) while the lowest was for itraconazole (GM = 0.10 µg/mL). MICs to fluconazole in C. gattii species complex were significantly higher than C. neoformans species complex (p < 0.001). Moreover, C. neoformans/VNI strains showed significantly higher MICs than others such as C. neoformans/VNII to fluconazole (p < 0.0001) and C. deneoformans/VNIV to amphotericin B (p = 0.022) and fluconazole (p = 0.008). In our collection of 167 clinical C. neoformans species complex strains, 85 (50.9%), 24 (14.4%), and 3 (1.8%) strains had an amphotericin B (AMB)-MIC of 1, 2, and 4 µg/mL, respectively. The high percentage (66.9%, 79/118 strains) of non-wild-type clinical C. neoformans VNI strains, using an AMB-ECV of 0.5 µg/mL, was found. Moreover, 25 of 28 (89.3%) C. neoformans VNI strains from environmental and veterinary sources also had AMB-MICs above 0.5 µg/mL. In general, there was no significant difference in GM AMB-MIC of the clinical strains isolated from patients with (35 patients) and without (78 patients) prior AMB treatment (0.85 vs 0.76; p = 0.624). GM MIC of the environmental strains was not significantly different from that of the prior AMB-treatment strains (0.98 vs 0.76, p = 0.159) and the post-AMB-treatment strains (0.98 vs 0.85, p = 0.488).

Conclusion: The high rate of non-wild-type among these otherwise naive isolates to amphotericin B is unexpected. Confirmation with more strains from a later era is needed.

Keywords: Cryptococcus neoformans/gattii species complexes; antifungal susceptibility; epidemiologic cutoff values; genotype; non-wild type; pre-HIV pandemic.