Reduced Arene Complexes of Scandium

Chemistry. 2020 Aug 12;26(45):10290-10296. doi: 10.1002/chem.202000946. Epub 2020 Jul 13.

Abstract

Alkali metal naphthalenide or anthracenide reacted with scandium(III) anilides [Sc(X){N(tBu)Xy}2 (thf)] (X=N(tBu)Xy (1); X=Cl (2); Xy=C6 H3 -3,5-Me2 ) to give scandium complexes [M(thf)n ][Sc{N(tBu)Xy}2 (RA)] (M=Li-K; n=1-6; RA=C10 H8 2- (3-Naph-K) and C14 H10 2- (3-Anth-M)) containing a reduced arene ligand. Single-crystal X-ray diffraction revealed the scandium(III) center bonded to the naphthalene dianion in a σ2 :π-coordination mode, whereas the anthracene dianion is symmetrically attached to the scandium(III) center in a σ2 -fashion. All compounds have been characterized by multinuclear, including 45 Sc NMR spectroscopy. Quantum chemical calculations of these intensely colored arene complexes confirm scandium to be in the oxidation state +3. The intense absorptions observed in the UV/Vis spectra are due to ligand-to-metal charge transfers. Whereas nitriles underwent C-C coupling reaction with the reduced arene ligand, the reaction with one equivalent of [NEt3 H][BPh4 ] led to the mono-protonation of the reduced arene ligand.

Keywords: NMR spectroscopy; UV/Vis spectroscopy; alkali metals; arenes; charge transfer; scandium.