Preventive and Therapeutic Potential of Physical Exercise in Neurodegenerative Diseases

Antioxid Redox Signal. 2021 Mar 10;34(8):674-693. doi: 10.1089/ars.2020.8075. Epub 2020 Apr 24.

Abstract

Significance: The prevalence and incidence of age-related neurodegenerative diseases (NDDs) tend to increase along with the enhanced average of the world life expectancy. NDDs are a major cause of morbidity and disability, affecting the health care, social and economic systems with a significant impact. Critical Issues and Recent Advances: Despite the worldwide burden of NDDs and the ongoing research efforts to increase the underlying molecular mechanisms involved in NDD pathophysiologies, pharmacological therapies have been presenting merely narrow benefits. On the contrary, absent of detrimental side effects but growing merits, regular physical exercise (PE) has been considered a prone pleiotropic nonpharmacological alternative able to modulate brain structure and function, thereby stimulating a healthier and "fitness" neurological phenotype. Future Directions: This review summarizes the state of the art of some peripheral and central-related mechanisms that underlie the impact of PE on brain plasticity as well as its relevance for the prevention and/or treatment of NDDs. Nevertheless, further studies are needed to better clarify the molecular signaling pathways associated with muscle contractions-related myokines release and its plausible positive effects in the brain. In addition, particular focus of research should address the role of PE in the modulation of mitochondrial metabolism and oxidative stress in the context of NDDs.

Keywords: BDNF; brain; mitochondria; myokines; oxidative stress; skeletal muscle.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Exercise*
  • Humans
  • Neurodegenerative Diseases / prevention & control*