Two-Dimensional Bimetallic Zn/Fe-Metal-Organic Framework (MOF)-Derived Porous Carbon Nanosheets with a High Density of Single/Paired Fe Atoms as High-Performance Oxygen Reduction Catalysts

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13878-13887. doi: 10.1021/acsami.9b22577. Epub 2020 Mar 16.

Abstract

Developing efficient non-precious-metal catalysts to accelerate the sluggish oxygen reduction reaction (ORR) is highly desired but remains a great challenge. Herein, using 2D bimetallic Zn/Fe-MOF as the precursor and g-C3N4 as the nitrogen source and stabilizer, porous carbon nanosheets doped with large amounts of single/paired Fe atoms (3.89 wt %) and N (10.28 wt %) are successfully prepared. It is found that the addition of g-C3N4 plays a key role in achieving a high loading of Fe single/paired atoms, and the 2D nanosheet structure gives the materials a high surface area and highly porous structure, resulting in outstanding ORR catalytic activity in both alkaline and acidic solutions. Our optimal sample achieved half-wave potentials in alkaline and acid media of up to 0.86 and 0.79 V (vs reversible hydrogen electrode (RHE)), respectively, values 20 mV higher than a commercial Pt/C catalyst in an alkaline medium and only 60 mV lower than Pt/C in an acidic medium. Moreover, its ORR durability was superior to that of commercial Pt/C in both electrolytes. We found that almost all the doped Fe in the sample existed as single or paired atoms coordinated with N. This work may provide an effective strategy for preparing high-performance catalysts bearing single/paired atoms by using MOFs as precursors.

Keywords: 2D materials; metal−organic framework (MOF); non-precious-metal catalyst; oxygen reduction reaction (ORR); single/paired atoms.