Phosphonium-Based Porous Ionic Polymer with Hydroxyl Groups: A Bifunctional and Robust Catalyst for Cycloaddition of CO2 into Cyclic Carbonates

Polymers (Basel). 2020 Mar 5;12(3):596. doi: 10.3390/polym12030596.

Abstract

The integration of synergic hydrogen bond donors and nucleophilic anions that facilitates the ring-opening of epoxide is an effective way to develop an active catalyst for the cycloaddition of CO2 with epoxides. In this work, a new heterogeneous catalyst for the cycloaddition of epoxides and CO2 into cyclic carbonates based on dual hydroxyls-functionalized polymeric phosphonium bromide (PQPBr-2OH) was presented. Physicochemical characterizations suggested that PQPBr-2OH possessed large surface area, hierarchical pore structure, functional hydroxyl groups, and high density of active sites. Consequently, it behaved as an efficient, recyclable, and metal-free catalyst for the additive and solvent free cycloaddition of epoxides with CO2. Comparing the activity of PQPBr-2OH with that of the reference catalysts based on mono and non-hydroxyl functionalized polymeric phosphonium bromides suggested that hydroxyl functionalities in PQPBr-2OH showed a critical promotion effect on its catalytic activity for CO2 conversion. Moreover, PQPBr-2OH proved to be quite robust and recyclable. It could be reused at least ten times with only a slight decrease of its initial activity.

Keywords: CO2 fixation; heterogeneous catalysis; hydrogen bond donors; phosphonium salt; porous ionic polymer.