A Novel Approach to Predict Wrinkling of Aluminum Alloy During Warm/Hot Sheet Hydroforming Based on an Improved Yoshida Buckling Test

Materials (Basel). 2020 Mar 5;13(5):1165. doi: 10.3390/ma13051165.

Abstract

In order to predict the wrinkling of sheet metal under the influence of fluid pressure and temperature during warm/hot hydroforming, a numerical simulation model for sheet wrinkling prediction was established, taking into account through-thickness normal stress induced by fluid pressure. From simulations using linear and quadratic elements, respectively, it was found that the latter gave results that were much closer to experimental data. A novel experimental method based on an improved Yoshida Buckling Test (YBT) was proposed for testing the wrinkling properties of sheets under the through-thickness normal stress. A wrinkling coefficient suitable for predicting wrinkling was also presented. Based on the numerical simulations, an experimental validation of wrinkling performance was conducted. Ridge-height curves measured along the main diagonal tensile direction of the sheet were presented and showed that the wrinkling prediction criterion provided good discrimination. Furthermore, the wrinkling properties of several different materials were simulated to evaluate the accuracy of the prediction method, and the results revealed that the improved YBT gave good predictions for wrinkling in the conventional sheet metal forming process, while the prediction results for wrinkling in warm/hot sheet hydroforming were also accurate with the fluid pressure of zero.

Keywords: hydromechanical deep drawing; through-thickness normal stress; warm sheet hydroforming; wrinkling prediction.