MADNet: A Fast and Lightweight Network for Single-Image Super Resolution

IEEE Trans Cybern. 2021 Mar;51(3):1443-1453. doi: 10.1109/TCYB.2020.2970104. Epub 2021 Feb 17.

Abstract

Recently, deep convolutional neural networks (CNNs) have been successfully applied to the single-image super-resolution (SISR) task with great improvement in terms of both peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). However, most of the existing CNN-based SR models require high computing power, which considerably limits their real-world applications. In addition, most CNN-based methods rarely explore the intermediate features that are helpful for final image recovery. To address these issues, in this article, we propose a dense lightweight network, called MADNet, for stronger multiscale feature expression and feature correlation learning. Specifically, a residual multiscale module with an attention mechanism (RMAM) is developed to enhance the informative multiscale feature representation ability. Furthermore, we present a dual residual-path block (DRPB) that utilizes the hierarchical features from original low-resolution images. To take advantage of the multilevel features, dense connections are employed among blocks. The comparative results demonstrate the superior performance of our MADNet model while employing considerably fewer multiadds and parameters.