Cooperative dynamics of proteins unraveled by network models

Wiley Interdiscip Rev Comput Mol Sci. 2011 May-Jun;1(3):426-439. doi: 10.1002/wcms.44. Epub 2011 Apr 11.

Abstract

Recent years have seen a significant increase in the number of computational studies that adopted network models for investigating biomolecular systems dynamics and interactions. In particular, elastic network models have proven useful in elucidating the dynamics and allosteric signaling mechanisms of proteins and their complexes. Here we present an overview of two most widely used elastic network models, the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM). We illustrate their use in (i) explaining the anisotropic response of proteins observed in external pulling experiments, (ii) identifying residues that possess high allosteric potentials, and demonstrating in this context the propensity of catalytic sites and metal-binding sites for enabling efficient signal transduction, and (iii) assisting in structure refinement, molecular replacement and comparative modeling of ligand-bound forms via efficient sampling of energetically favored conformers.