Ecotoxicological equilibria of triclosan in Microtox, XenoScreen YES/YAS, Caco2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants

Sci Total Environ. 2020 Jun 1:719:137358. doi: 10.1016/j.scitotenv.2020.137358. Epub 2020 Feb 16.

Abstract

Contaminants of emerging concern may be considered as any chemicals or factors whose unintended continuous release and persistence in the environment may lead to any observable undesirable response of living beings. Still not much is known on reciprocal toxicological impact of given chemicals when present in binary or more complex mixtures. In this work, an attempt was thus undertaken to study the impact of butylparaben, methylparaben and diclofenac on toxicological behavior and properties of triclosan (at varying concentration levels) with respect to Microtox, XenoScreen YES/YAS, Caco-2, HEPG2, and liposomal systems. Having performed analytical and biological studies modeling was done using two modeling approaches, viz., concentration addition (CA) and independent action (IA) at three concentration levels of each chemical studied. The effect of the highest concentration of triclosan studied was impacted by even small amounts of methylparaben and butylparaben in Microtox while diclofenac preferably affected triclosan activity at its lowest concentration level (with CA model). Estrogenic agonistic properties of triclosan were severely impacted by both parabens in an antagonistic way; diclofenac showed in all cases underestimation or synergy at the lowest triclosan concentration studied. Estrogenic antagonistic activity of triclosan was also slightly affected by parabens and by diclofenac in binary mixtures, showing overestimation and antagonist effects. HepG2 cells appeared to be the most resistant to the toxic effect of the mixtures at the concentrations tested and no significant proof of synergy or antagonism could be detected with the MTT assay. The liposome assays on the mixtures followed the same trends obtained with the MTT assay with Caco-2 cells, confirming the validity of the in vitro model used in this research. As studies on emerging contaminants mixtures toxicity are still scarce, research presented here constitute an important part in confirming utility and versatility of emerging contaminants modeling in environmental toxicology.

Keywords: Diclofenac; Endocrine potential; Genotoxicity; Liposomes; Microtox; Parabens; Triclosan toxicity.

MeSH terms

  • Biological Assay
  • Caco-2 Cells
  • Cosmetics
  • Ecotoxicology*
  • Hep G2 Cells
  • Humans
  • Liposomes
  • Triclosan

Substances

  • Cosmetics
  • Liposomes
  • Triclosan