Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles

Anal Chim Acta. 2020 Apr 8:1105:197-207. doi: 10.1016/j.aca.2020.01.049. Epub 2020 Jan 24.

Abstract

Iron ions play a key role in many physiological processes, which can provide feedback for the evaluation of biological systems and environmental processes. New strategies for portable determination of Fe3+ therefore are still in urgent need. Here, through an in situ generation of prussian blue nanoparticles (PB NPs) in aqueous solution, we developed a bimodal method for photothermal and colorimetric detection of Fe3+. The sensing mechanism is based on the effective oxidation etching of Au-Cu core-shell nanocubes induced by Fe3+, accompanied by the in situ generation of PB NPs. It can be attributed to the specific reaction between ferrous ions (Fe2+) from the reduction of Fe3+ and potassium ferricyanide (K3[Fe(CN)6]) in the reaction solution. The in situ produced PB NPs show distinct bare-eye-detectable readouts with highly sensitive colorimetric and photothermal responses and thus can be used for Fe3+ determination. Such colorimetric change signals of characteristic absorbance at 740 nm in the UV-vis spectra showed a sensitive response to Fe3+ with a LOD of 210 nM. Moreover, as a sensitive photothermal probe, PB NPs generated in our Fe3+-enabled reaction system also exhibited a sensitive response to Fe3+ with a LOD of 70 nM. In addition, the standard addition experiments demonstrate our photothermal and colorimetric probe has good applicability for Fe3+ detection in the river water sample. What's more, the proposed strategy opens a new horizon for affordable detection of metal ions using a common thermometer, and therefore has a great potential for analytical chemistry and some important applications such as environmental monitoring, disease diagnostics and food analysis.

Keywords: Au–Cu core-shell nanocubes; Colorimetric; Ferric ions; Photothermal; Prussian blue nanoparticles.

MeSH terms

  • Colorimetry*
  • Ferrocyanides / analysis*
  • Ions / analysis
  • Nanoparticles / analysis*
  • Particle Size
  • Photochemical Processes
  • Surface Properties
  • Temperature*
  • Water Pollutants, Chemical / analysis*

Substances

  • Ferrocyanides
  • Ions
  • Water Pollutants, Chemical
  • ferric ferrocyanide