Multiple dengue virus serotypes resistant transgenic Aedes aegypti fitness evaluated under laboratory conditions

RNA Biol. 2020 Jul;17(7):918-929. doi: 10.1080/15476286.2020.1735210. Epub 2020 Mar 6.

Abstract

Dengue viruses (DENV) are the wildest transmitted arbovirus members of the family Flaviviridae, genus Flavivirus. Dengue viruses are composed of four serotypes, DENV1, 2, 3, and 4, and these viruses can cause dengue fever and dengue haemorrhagic fever or dengue shock syndrome, when infecting humans. RNA interference (RNAi) is a self-defence mechanism, which can be used to prevent invasions of RNA viruses to the host. Genetically engineering a host with an RNAi molecule that targets a single virus serotype may develop escape mutants, and can cause unusual dominance over other serotypes. Therefore, the simultaneous targeting of multiple serotypes is necessary to block DENV transmission. Here, we report the development of transgenic Aedes aegypti based on a bioinformatically designed multiple miRshRNA (microRNA-based shRNA) DNA sequence under the control of a blood-meal induced promoter, Carboxypeptidase A, to induce RNAi for DENV in Aedes aegypti, and demonstrate the expression of a synthetic multiple shRNA polycistronic cluster having RNA interference sequences to target DENV genomes. The transgenic mosquitoes have lower rates of infection, dissemination, and transmission for DENV2 and DENV4 compared to wild mosquitoes, with a significant reduction of dengue copy number and antigen levels in the midgut. These levels of DENV were low enough to make transgenic mosquitoes stop the DENV transmission from infected host to a susceptible host and refractory to DENV2 and DENV4 infection. Such multiple resistance in Ae. aegypti has not been documented previously. Laboratory fitness measurement of transgenic Ae. aegypti showed results comparable to other reported transgenic mosquitoes.

Keywords: RNA interference; aedes aegypti; piggyBac; dengue disease; multiple miRshRNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes / genetics*
  • Aedes / virology*
  • Animals
  • Animals, Genetically Modified*
  • Dengue / transmission
  • Dengue / virology
  • Dengue Virus / classification*
  • Female
  • Gene Expression
  • Genetic Engineering
  • Genetic Fitness*
  • Genetic Vectors / genetics
  • Male
  • Mosquito Vectors / genetics*
  • Mosquito Vectors / virology*
  • RNA, Small Interfering / genetics
  • Serogroup*

Substances

  • RNA, Small Interfering

Grants and funding

We acknowledge the National Research Council [TO 14-04] for funding and the International Atomic Energy Agency [IAEA SRL5/047] for technical co-operation;National Research Council Sri Lanka [TO 14-04].