Layer-by-Layer Motif Heteroarchitecturing of N,S-Codoped Reduced Graphene Oxide-Wrapped Ni/NiS Nanoparticles for the Electrochemical Oxidation of Water

ChemSusChem. 2020 Jun 19;13(12):3269-3276. doi: 10.1002/cssc.202000159. Epub 2020 May 12.

Abstract

A new heterostructured material is synthesized with lamellar arrangements in nanoscale precision through an innovative synthetic approach. The self-assembled Ni-based cyano-bridged coordination polymer flakes (Ni-CP) and graphene oxide (GO) nanosheets with a layered morphology (Ni-CP/GO) are used as precursors for the synthesis of multicomponent hybrid materials. Annealing of Ni-CP/GO in nitrogen at 450 °C allows the formation of Ni3 C/rGO nanocomposites. Grinding Ni-CP/GO and thiourea and annealing under the same conditions produces N,S-codoped reduced GO-wrapped NiS2 flakes (NiS2 /NS-rGO). Interestingly, further heating up to 550 °C allows the phase transformation of NiS2 into NiS accompanied by the formation of a face-centered cubic (FCC-Ni) metal phase between NS-rGO layers (FCC-Ni-NiS/NS-rGO). Among all the materials, the resulting FCC-Ni-NiS/NS-rGO exhibits good electrocatalytic activity and stability toward the oxygen evolution reaction (OER) owing to the synergistic effect of multiphases, the well-designed alternating layered structures on the nanoscale with abundant active sites.

Keywords: electrocatalysis; heterostructures; metal carbides; metal sulfides; nanohybrids.