Expression profiling of the genes encoding ABA route components and the ACC oxidase isozymes in the senescing leaves of Populus tremula

J Plant Physiol. 2020 May:248:153143. doi: 10.1016/j.jplph.2020.153143. Epub 2020 Feb 26.

Abstract

Abscisic acid (ABA) triggers and regulates, while ethylene modulates autumn leaf senescence. The expression profiles of genes encoding ABA route components and the ACC oxidase isozymes were investigated in Populus tremula during the early and moderate stages of autumn leaf senescence. The targets of interest were Ptre-HAB1-like genes (Ptre-HAB1, Ptre-HAB3a and Ptre-HAB3b), the subclass 3 of Ptre-SnRK2s genes (Ptre-SnRK2.6a, Ptre-SnRK2.6b and Ptre-SnRK2.6b) and Ptre-RbohD1, Ptre-RbohF1, and Ptre-RbohF2 genes encoding the poplar components, which are counterparts of the ABA route key regulators or the counterparts of its secondary messengers, such as Homology to ABA-insensitive 1 (HAB1), Sucrose non-fermenting 1-related protein kinases 2 (SnRK2s) or Respiratory burst oxidase D and Respiratory burst oxidase F (RbohD and RbohF, respectively) in Arabidopsis, and Ptre-ACO3, Ptre-ACO5, and Ptre-ACO6 genes encoding ACC oxidase isozymes involved in ethylene biosynthesis. The fold change in their expression levels enabled to distinguish the distinct expression patterns for the following pairs of genes: Ptre-HAB3a and Ptre-SnRK2.6a, Ptre-HAB3b and Ptre-SnRK2.2, and Ptre-HAB1 and Ptre-SnRK2.6b, where each pair involves the genes encoding the negative and positive regulators of ABA route, respectively. Among the investigated genes, the fold change of expression was the highest for Ptre-ACO3, Ptre-ACO6, and Ptre-SnRK2.6b genes during both the studied stages, and additionally for Ptre-HAB1 and Ptre-RbohD1 genes during the moderate stage. In contrast, the Ptre-RbohF1 and Ptre-RbohF2 genes exhibited only the transient upregulation at the early stage of senescence. In an in vitro study, the ability of protein kinases Ptre-SnRK2.6a and Ptre-SnRK2.6b to phosphorylate the N-terminal regions of Ptre-RbohD1 and Ptre-RbohF2 was studied; the activity of Ptre-SnRK2.6b against the studied Ptre-Rbohs was noticeably lower than that exhibited by Ptre-SnRK2.6a. It seems that despite the high similarity of their polypeptides, Ptre-SnRK2.6a and Ptre-SnRK2.6b may play different biological roles; nonetheless, it requires in vivo confirmation. Surprisingly, the highest protein kinase activity against the Ptre-Rbohs was detected in the heterologous reaction with AT-SnRK2.6/OST1 which suggests that the discussed interactions are evolutionary conserved.

Keywords: Abscisic acid; Autumn leaf senescence; Ethylene; Poplar; Reactive oxygen species.

MeSH terms

  • Abscisic Acid
  • Amino Acid Oxidoreductases / genetics*
  • Amino Acid Oxidoreductases / metabolism
  • Gene Expression Profiling
  • Genes, Plant
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Plant Leaves / genetics
  • Plant Leaves / metabolism
  • Populus / genetics*
  • Populus / metabolism
  • Signal Transduction / genetics*
  • Transcriptome*

Substances

  • Isoenzymes
  • Abscisic Acid
  • Amino Acid Oxidoreductases
  • 1-aminocyclopropane-1-carboxylic acid oxidase