Ancistrosecolines A-F, Unprecedented seco-Naphthylisoquinoline Alkaloids from the Roots of Ancistrocladus abbreviatus, with Apoptosis-Inducing Potential against HeLa Cancer Cells

J Nat Prod. 2020 Apr 24;83(4):1139-1151. doi: 10.1021/acs.jnatprod.9b01168. Epub 2020 Mar 3.

Abstract

Ancistrosecolines A-F (8-13) are the first seco-type naphthylisoquinoline alkaloids discovered in Nature. In all these novel compounds, the tetrahydroisoquinoline ring is cleaved, with loss of C-1. They were isolated from the root bark of Ancistrocladus abbreviatus (Ancistrocladaceae), along with 1-nor-8-O-demethylancistrobrevine H (14), which is the first naturally occurring naphthylisoquinoline lacking the otherwise generally present methyl group at C-1. The stereostructures of the new alkaloids were established by HRESIMS, 1D and 2D NMR, oxidative degradation, and experimental and quantum-chemical ECD investigations. Ancistrosecolines A-F (8-13) and 1-nor-8-O-demethylancistrobrevine H (14) are typical Ancistrocladaceae-type metabolites, i.e., oxygenated at C-6 and S-configured at C-3, belonging to the subclasses of 7,1'- and 7,8'-coupled alkaloids. The biaryl linkages of 8-14 are rotationally hindered due to bulky ortho-substituents next to the axes. Owing to the constitutionally unsymmetric substitution patterns on each side of the axis, this C-C single bond represents an element of chirality in 1-nor-8-O-demethylancistrobrevine H (14) and in ancistrosecolines A-D (8-11). In ancistrosecolines E (12) and F (13), however, the likewise rotationally hindered biaryl axes do not constitute chiral elements, due to a symmetric substitution pattern, with its identical two methoxy functions at C-6 and C-8 in the phenyl subunit. And these two methoxy groups are, for the first time, not constitutionally heterotopic, but diastereotopic to each other. Ancistrosecoline D (11) exhibits strong cytotoxicity against HeLa cervical cancer cells. As visualized by Hoechst nuclei staining and by real-time imaging experiments, 11 induced massive nuclei fragmentation in HeLa cells, leading to apoptotic cell death.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaloids / chemistry*
  • Alkaloids / isolation & purification
  • Alkaloids / pharmacology
  • Antineoplastic Agents, Phytogenic / chemistry
  • Antineoplastic Agents, Phytogenic / isolation & purification
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Apoptosis / drug effects*
  • Caryophyllales / chemistry*
  • Cell Line, Tumor
  • HeLa Cells
  • Humans
  • Isoquinolines / chemistry
  • Isoquinolines / isolation & purification
  • Isoquinolines / pharmacology*
  • Magnoliopsida / chemistry*
  • Molecular Structure
  • Plant Roots / chemistry

Substances

  • Alkaloids
  • Antineoplastic Agents, Phytogenic
  • Isoquinolines