Stem Cell/Oxygen-Releasing Microparticle Enhances Erectile Function in a Cavernous Nerve Injury Model

Tissue Eng Part A. 2021 Jan;27(1-2):50-62. doi: 10.1089/ten.TEA.2019.0240. Epub 2020 Mar 31.

Abstract

Erectile dysfunction caused by damage to the cavernous nerve is a common complication of radical prostatectomy for patients with localized prostate cancer. Various studies have investigated repair of damaged tissue and prevention of fibrosis in the corpus cavernosum using stem cell therapy. However, stem cell therapy has limitations, including insufficient nutrient and oxygen supply to transplanted stem cells. This study investigated whether stem cell/oxygen-releasing hollow microparticles (HPs) had therapeutic effect on erectile dysfunction in a rat model of bilateral cavernous nerve injury (BCNI). Therapeutic effects were observed in the BCNI model at 1, 2, and 4 weeks postcavernous nerve injury. Erectile function further improved after treatment with stem cell/oxygen-releasing HP system compared with treatment with only stem cells at 4 weeks. Stem cell/oxygen-releasing HP system increased cyclic guanosine monophosphate (cGMP) level and neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), α-smooth muscle actin (α-SMA), and muscarinic acetylcholine receptor 3 (M3) expression while decreasing fibrosis and apoptosis in the corpus cavernosum. Our results clearly show that stem cell survival increases around transplanted stem cell/oxygen-releasing hybrid system site. Taken together, an oxygen-releasing HP system supported prolonged stem cell survival, sustaining the paracrine effect of the stem cells, and consequently enhancing erectile function. These findings show promise with regard to prolonged stem cell survival in stem cell applications for various diseases and types of tissue damage. Impact statement In this study, we used an oxygen-releasing hollow microparticles (HPs) system with stem cells to attempt to overcome certain limitations of stem cell therapy, including insufficient nutrient and oxygen supplies for transplanted stem cells. Our results demonstrated that a stem cell/oxygen-releasing HP hybrid system could further improve erectile function, cyclic guanosine monophosphate (cGMP) level, and NOS level in a bilateral cavernous nerve injury rat model through prolonged stem cell survival. Our data suggest that a stem cell/oxygen-releasing HP system is a promising clinical treatment option for postprostatectomy erectile dysfunction. Furthermore, this system may be relevant in different disease therapies and regenerative medicine.

Keywords: animal models; biocompatible materials; cell transplantation; erectile dysfunction; oxygen delivery; stem cells; tissue regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Erectile Dysfunction* / therapy
  • Humans
  • Male
  • Oxygen
  • Penile Erection
  • Rats
  • Rats, Sprague-Dawley
  • Stem Cells

Substances

  • Oxygen