Programmable optical pulse repetition rate multiplication via spectral phase manipulation

Opt Express. 2020 Feb 3;28(3):4178-4193. doi: 10.1364/OE.380586.

Abstract

Flexible phase patterns for optical pulse repetition rate multiplication (PRRM) are proposed and experimentally demonstrated via spectral phase-only manipulation. We introduce formulas of the phase condition for power lossless PPRM with arbitrary multiplication factors and undistorted temporal pulse profiles. For some multiplication factors the solution extends PRRM phase patterns from reported phase conditions to more flexible phase patterns, inspiring potentials of further devices available for PRRM. This flexibility also benefits PRRM when we use the reported devices. As a proof of concept, we numerically and experimentally demonstrate PRRM with multiplication factors up to eight by programming the spectral phase using an optical wave-shaper (OWS), involving different phase patterns. In practice, manipulation of the spectral phase induces spectral amplitude variations due to the intrinsic property limitation of the OWS. We quantitatively characterize this limitation and select a suitable phase pattern from our new solution to achieve a uniform temporal pulse train but with no spectral amplitude trimming.