Intracavity image upconversion system with fast and flexible electro-optic image gating based on polarization-frustrated phase-matching for range-gated applications

Opt Express. 2020 Jan 20;28(2):1936-1953. doi: 10.1364/OE.383735.

Abstract

We report on a new image gating mechanism for intracavity nonlinear image upconversion systems that uses sum-frequency mixing of an external infrared image and a pump laser beam. Fast and flexible time duration gating of the upconverted image is achieved through transient electro-optic frustration of the phase-matching condition in a nonlinear crystal placed inside the cavity of the pump beam. The phase-matching condition is controlled by altering the polarization state of the laser cavity beam without interrupting laser oscillation, using a Pockels cell in one arm of an L-folded standing-wave resonator. In this way, an external image shutter mechanism is added to an image upconverter system that allows for using low shutter-speed EMCCDs (Electron Multiplying CCD) in range-gated imaging systems across the whole IR and potentially in the THz range.