Design of a large aperture, tunable, Pancharatnam phase beam steering device

Opt Express. 2020 Jan 20;28(2):991-1001. doi: 10.1364/OE.380952.

Abstract

Replacing mechanical optical beam steering devices with non-mechanical electro-optic devices has been a long-standing desire for applications such as space-based communication, LiDAR and autonomous vehicles. While promising progress has been achieved to non-mechanically deflect light with high efficiency over a wide angular range, significant limitations remain towards achieving large aperture beam steering with a tunable steering direction. In this paper, we propose a unique liquid crystal based Pancharatnam Phase Device for beam steering which can provide both tunability and a fast response times in a format scalable to large apertures. This architecture employs a linear array of phase control elements to locally control the orientation of the liquid crystal director into a cycloidal pattern to deflect transmitted light. The PCEs are comprised of a fringe field switching electrode structure that can provide a variable in-plane electric field. Detailed modeling of the proposed design is presented which demonstrates that such a device can achieve a high degree of uniformity as it rotates the LC molecules over the 180 ° angular range required to create a Pancharatnam phase device.