Synergistic Pt-WO3 Dual Active Sites to Boost Hydrogen Production from Ammonia Borane

iScience. 2020 Mar 27;23(3):100922. doi: 10.1016/j.isci.2020.100922. Epub 2020 Feb 19.

Abstract

Development of synergistic heterogeneous catalysts with active sites working cooperatively has been a pursuit of chemists. Herein, we report for the first time the fabrication and manipulation of Pt-WO3 dual-active-sites to boost hydrogen generation from ammonia borane. A combination of DFT calculations, structural characterization, and kinetic (isotopic) analysis reveals that Pt and WO3 act as the active sites for ammonia borane and H2O activation, respectively. A trade-off between the promoting effect of WO3 and the negative effect of decreased Pt binding energy contributes to a volcano-shaped activity, and Pt/CNT-5W delivers a 4-fold increased activity of 710.1 molH2·molPt-1·min-1. Moreover, WO3 is suggested to simultaneously act as the sacrificial site that can divert B-containing by-products away from Pt sites against deactivation, yielding an increase from 24% to 68% of the initial activity after five cycles. The strategy demonstrated here could shed a new light on the design and manipulation of dual-active-site catalysts.

Keywords: Catalysis; Inorganic Chemistry; Nanomaterials.