Temperature-insensitive broadband optical parametric chirped pulse amplification based on a tilted noncollinear QPM design

Opt Express. 2020 Jan 6;28(1):57-70. doi: 10.1364/OE.379371.

Abstract

Ultrafast pulsed laser of high intensity and high repetition rate is the combined requisite for advancing strong-field physics experiments and calls for the development of thermal-stable ultrafast laser systems. Noncollinear phasing matching (PM) is an effective solution of optimizing the properties of optical parametric chirped pulse amplification (OPCPA) to achieve broadband amplification or to be temperature-insensitive. But as a cost, distinct noncollinear geometries have to be respectively satisfied. In this paper, a noncollinear quasi-phase-matching (QPM) scheme of both temperature- and wavelength-insensitive is presented. With the assistance of the design freedom of grating wave vector, the independent noncollinear-angle requirements can be simultaneously realized in a tilted QPM crystal, and the temperature-insensitive broadband amplification is achieved. Full-dimensional spatial-temporal simulations for a typical 1064 nm pumped mid-IR OPCPA at 3.4 µm are presented in detail. Compared with a mono-functional temperature-insensitive or broadband QPM scheme, the presented QPM configuration shows a common characteristic that simultaneously optimizes the thermal stability and the gain spectrum. Broadband parametric amplification of a ∼40 fs (FWHM) pulsed laser is achieved with no signs of gain-narrowing. Both of the beam profiles and the amplified spectra stay constant while the temperature is elevated by ∼100°C. Finally, influence of the QPM grating errors on the gain spectrum is discussed.